
Introduction 
Kalman filtering is a method for recursively updating an estimate µ of the state of a 

system by processing a succession of measurements Z. After each measurement, a new 

state estimate is produced by the measurement step. Z and µ do not necessarily have to 

have the same dimensionality; for example, µ could be an estimate of the two 

dimensional position of a target, which would be represented as a 2-by-1 matrix, whereas 

Z could be a bearing to the target (a scalar). Provision is made in the movement model for 

the possibility that the state of the system may change between measurements.  

All of Kalman’s computations can be thought of as manipulations of multivariate 

normal probability distributions. In fact, there are only two essential facts on which the 

whole structure is built, the first being associated with movement and the second with 

measurement. These facts are stated below using random variables X, V, and W, all 

independent of each other. Throughout these notes, symbols for matrices will be given in 

bold type. The state X is assumed to be multivariate normal with mean µ and covariance 

matrix , which we abbreviate X ~ N(µ, Σ). V is the measurement noise and W is the 
movement noise; we assume V ~ N(µV, R) and W ~ N(µW, Q). X and W are n-
dimensional and V is m-dimensional. If 

Σ

φ  and H are appropriately dimensioned 

movement and measurement matrices, the two vital facts are (the superscriptt means 

transpose and I is the identity matrix): 

1) If X′ = φX + W, then X′ ~ N(µ′, Σ′), where µ′ = φµ + µW and 
Σ′ = φΣφt + Q. 

2) If Z = HX + V, then, conditional on Z being given, X ~ N(µ̂ , ), where  
µ̂  = µ + K(Z–µV–Hµ) and 

Σ
 = (I–KH)Σ. The matrix K is called the Kalman 

gain, and is given by K = ΣHt (HΣHt + R)–1.  In general, computation of K 
requires a matrix inverse. 

Σ

Discussion of Fact 1: 

The purpose of a KF is to keep track of the state of a system by making a sequence 

of measurements. It is permitted to have the state of the system change from X to X′ 

between measurements, with the attractive feature of the movement model X′ = φX + W 
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being that normality is preserved. The formula for µ′ should make intuitive sense, given 

the movement model. Recall that in the scalar case Var(φX) = φ2 Var(X), so that the 

presence of both φ and φt in the formula for Σ′ should come as no surprise. Q is additive 
because W is independent of X. φ and Q are n-by-n matrices, and µW is an n-vector. If the 

system state does not change between measurements (vacuous movement step), then φ = 
I, µW = 0, and Q = 0. 

Discussion of Fact 2: 

Suppose you were told that X ~ N(–1, 4), and asked to guess X. You would probably 

guess “–1”, the mean value. That answer can be justified as being optimal in almost any 

reasonable sense of the word. Suppose you were also told that Z = –3.1, and that Z was 

obtained by adding a “measurement noise” V to X, where V ~ N(0, 2). Given this 

information, what would you guess for X? Since Z is smaller than –1, and since Z 
represents a reasonably accurate, unbiased (µV = 0) measurement of X, your intuition 

would tell you to revise your estimate of X downward. In fact, since 2 < 4, you would 

probably conclude that the best guess at X would be closer to –3.1 than to –1. The best 

way to make these intuitive considerations precise is to employ Bayes’ Theorem, as is 

done in the appendix. The result of that application is Fact 2. In our scalar example, Σ = 

4, H = 1, and R = 2. It follows that K = 2/3, µ̂  = (–1) + (2/3) (–3.1 + 1) = –2.4, and  

 = (1 –2/3)Σ = 4/3. Not only does Bayes tell you to guess –2.4, but he tells you how 

accurate the guess is!  

Σ

Fact 2 states that the best way to process the information in Z is to revise the 

“inputs” µ and Σ to the “outputs” µ̂  and Σ . The state of the system is still normal after 

the measurement is processed--the mean and covariance matrix have simply changed. 

The fact that normality is preserved is important, since µ̂  and Σ  may be the inputs to 

similar calculations in the future. 

The simplicity of the way in which Kalman revises µ to µ̂  is also important. Note 
that Hµ + µV is the mean or best guess of the measurement Z, so that Z – µV – Hµ is the 

“shock” caused by the measurement*. If the measurement is not shocking, Kalman sets 

                                                 
* There is a different formula for shock if the KF is extended (see p. 12).  
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 µ̂  = µ; otherwise, he makes a correction that is proportional to the shock. The matrix K 

is simply the proportionality constant. This method of revising µ to µ̂  is so simple and 

natural that the robustness of the procedure with respect to modeling errors should not be 

surprising. 
Employment of Fact 2 requires one to know H, µV, and R. If Z has m components, 

then H is m-by-n, µV is m-by-1, and R is m-by-m.  

Operation of the KF 
There are two more required inputs: µ0 and Σ0 are the initial values for µ and Σ, 

respectively. Once µ and Σ are initialized, all calculations correspond to either movement 

or measurement, as exemplified in the diagrams in Figure 1, where the replacement 

symbol ← makes it possible to dispense with the ' and ˆ notation used in stating Facts 1 

and 2. 

The ← notation emphasizes that operation of a Kalman Filter can be thought of as a 

sequence of updates to µ and Σ. Sufficient memory to store one copy of µ and one copy 

of Σ is all that is required when these updates are made by computer, as is usually the 

case. However, for tutorial purposes it is sometimes useful to let (µi(–), Σi(–)) be (µ, Σ) 

with all updates up to time ti except for the measurement at time ti, and to let (µi(+), 

Σi(+)) be similarly defined except that the update for the measurement at time ti is 

included. Thus the measurement block of Figure 1 updates (µi(–), Σi(–)) to (µi(+), Σi(+)), 

while the movement block updates (µi(+), Σi(+)) to (µi+1(–), Σi+1(–)). Other matrices will 

also be subscripted for time in this expanded notation.  
 

MOVEMENT  MEASUREMENT (Z) 
µ←φµ + µw 

Σ←φΣφt + Q 

 K←ΣΗt(ΗΣΗt + R)−1 
µ←µ + K(Ζ − µv − Ηµ) 
Σ←(Ι − ΚΗ)Σ 

Figure 1. Showing the calculations corresponding to movement and 
measurement in a Kalman Filter. 
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Summary of Notation 

φ is the movement matrix, and is part of the description of how the state 
changes between measurements. 

(µW, Q) is the mean and covariance of the movement noise. If you accidentally 
make Q too large, Kalman will be “high strung”; that is, his estimates 
will bounce around a lot because he takes the measurements too seriously 
because he make K too large. If you make Q too small, Kalman will be 
“lethargic” because he makes K too small. 

H is the measurement matrix that describes how the measurement depends 
on the state. 

(µV, R) is the mean and covariance of the measurement noise. Kalman’s 
tendencies with respect to R are the opposite of those with Q. 

(µ, Σ) is the mean and covariance of the state of the system. µ can also be 
interpreted as Kalman’s guess at the state of the system. The initial values 
(µ0, Σ0 ) must be provided; after that, it is Kalman’s job to continually 
update (µ, Σ). It is sometimes useful to have a notation that distinguishes 
(µ, Σ) before and after the ith measurement is processed, in which case we 
will refer to (µi(–), Σi(–)) as the “before” quantities and (µi(+), Σi(+)) as 
the “after” quantities. 

Z is the measurement. 

K is the Kalman gain.  This is used to update (µ, Σ) by processing Z (see 
cover illustration). 

Example 1 

A target moves in a one-dimensional random walk, adding an increment to its position 

between observations that is normal with mean 1 mile and standard deviation 2 miles. In 
other words, φ = 1, Q = 4 miles2, and µW = 1 mile. The state or position of the target is 

basically increasing with time, but the random component will cause occasional 
exceptions where the state decreases instead of increasing. We also assume H = 1, µV = 

0, and R = 9 miles2, which is the same as saying that unbiased measurements of X are 

available that are accurate to within about R  = 3 miles standard deviation. The initial 
guess at the target’s position is µ0 = 0, Σ0 = 10000 miles2; the large value for Σ0 indicates 

that whoever was forced to make the initial guess had basically no idea where the target 

was. Suppose the first three measurements are 84, 83, and 88, from which we might 
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conclude that the target’s position is somewhere in the 80’s even without Kalman’s help. 
We take (µ0, Σ0).  to be (0, 10000), which essentially says that the initial guess is 0, but 

so inaccurate that it should not be trusted.  Since a measurement is made before the target 
moves, we take (µ1(–), Σ1(–)) to be (µ0, Σ0). The KF would use the measurement and 

movement blocks alternately, with the results for (µ, Σ) shown in Figure 2. 
 Before Measurement i  After Measurement i 
 µi(−) Σi(−) Κi µi(+) Σi(+) 

1 0 10000 1.00 84 9 
2 85 13 .59 83.82 5.32 
3 84.82 9.32 .51 86.44 4.58 
4 87.44 8.58 .49 ? 4.39 
 ?   ?  

∞ ? 8.33 .48 ? 4.33 
 

Figure 2.  Employment of a Kalman Filter to track a target. 

Since the first Kalman gain is (10000/10009) ≈ 1, the filter forgets the initial guess 

entirely as soon as the first measurement is available; it guesses that the target’s position 
is µ1(+) = 84, with the associated accuracy being the same as the accuracy of a 

measurement. It then adds 1 to µ1(+) and 4 to Σ1(+) to obtain µ2(–) and Σ2(–), reflecting 

the idea that the best guess of the target’s position right before the second measurement is 
one unit larger than the best guess right after the first, but that µ2(–) is a worse guess than 

µ1(+) because of the unpredictable part of the target’s motion. Turn the crank to make 

sure you see how the rest of the numbers are obtained. Letting Ki be the Kalman gain for 

the ith measurement, you should get K3 = 9.32/(9.32 + 9) = .51, µ3(+) = 84.82 + .51 (88 – 

84.82) = 86.44, etc. 
Note that K4 and Σ4(+) can be computed even before the fourth measurement is 

made; in fact, the entire sequence of Kalman gains and variances is completely 

independent of the measurements. A close inspection of Figure 1 shows that this will 

always be the case; neither Z nor µ is ever used in computing Σ or K. This could be an 

important feature in a situation where measurements had to be processed rapidly, since 

the Kalman gains could all be computed beforehand. 

The movement block is a variance increasing operation, while the measurement 

block is a variance decreasing operation. This is evident in Figure 2. It sometimes 
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happens that the net result of these opposite forces is that the covariance matrices and 

Kalman gains approach steady state limits. Assuming they exist, the steady state limits 

Σ(–), K, and Σ(+) must satisfy the equations 
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In our scalar example with Σ = H = 1, R = 9, and Q = 4, the only solution of these 

equations for which Σ (+) is positive is 
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Comparison of these three numbers with the fourth row of Figure 2 shows that the steady 

state limit is approached rather quickly in this case. Note that the steady state accuracy of 
the filter’s estimate right after a measurement ( Σ +b g = 2.08 miles) is better than the 

accuracy associated with the latest measurement (3 miles). In fact, Σ(+) would be 0 if 

either R were 0 (that’s obvious) or if Q were 0 (that’s not obvious, but think about what 

happens when you can make lots of measurements of an unknown but fixed quantity). 
Note also that the steady state equations do not involve µ0 or Σ0, which is a relief. 

A particularly simple filter would use the steady state K at every stage and dispense 

with the covariance matrix calculations. Such a filter will typically behave poorly in the 
early stages unless the initial guess µ0 happens to be close to the truth. But if only steady 

state performance is important, the simplicity of the technique could make it attractive. 
Try repeating the calculation of µ4(–) in the example using K1 = K2 = K3 = .48. Better 

yet, use K1 = K2 = K3 = .5, since the basic point is that the filter will still do a good job 

even if the gain schedule isn’t precisely as indicated in Figure 2. 
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Example 2 

Suppose now that the target of Example 1 is actually quite massive, so that the 

erratic type of random walk motion postulated there is implausible. Suppose, instead, that 

the target can actually be thought of as having a velocity that changes by only a small 

amount (say .1 miles per hour) over the .5 hour time interval between position 

measurements. The “state” of the target is now (position, velocity)t, a 2-by-1 vector. The 

movement model has  

      
φ =

1 .5hours
0 1

 

  
 

  Q =
0 0
0 .01miles 2 hour 2

 

  
 

  µW =
0
0

 

  
 

   

Assuming that the measurement is still of the target’s position, H is now the 1-by-2 
matrix H = [1  0], and R is as before. After initializing Σ0 and µ0 (which are now 2-by-2 

and 2-by-1 matrices), the movement and measurement blocks can be employed as before. 

If the new movement model is a better representation of how targets move than was the 

simple random walk of Example 1, then the position estimates (first component of µ) will 

be more accurate than they were before. This trick of improving accuracy by augmenting 

the state vector will come as no surprise to a reader familiar with Markov Chains. The 

main computational effort in implementing a Kalman Filter is in calculating K, where a 

matrix with the same dimensions as R must be inverted. Since the dimensions of this 

matrix are independent of the size of the state vector, the computational impact of such 

augmentation is fairly small. 

The IOU Model and MTST 
Let Xt be the velocity of a target at time t, and suppose that Xt+1 = Xt + Wt for t ≥ 1, 

where W1, W2, … is a sequence of independent identically distributed normal random 

variables with mean 0 and variance q. This is a model of random walk.  With  

q = .01 miles2/hr2, it would be the velocity model employed in Example 2. Since 
Var(Xt+1) = Var(Xt) + q, the sequence X1, X2, … has a progressively increasing variance. 

In the long run, according to this movement model, target speeds that exceed (say) 1000 

miles/hr are not only possible but likely. Most real targets on earth cannot achieve such 

speeds, so this feature must be considered a modeling defect. However, a simple revision 
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can at least keep Var(Xt) within bounds, and thereby render such extreme deviations from 

0 unlikely.  
The revision is Xt+1 = cXt + Wt, where 0 ≤ c < 1. Since Var(Xt+1) = c2Var(Xt) + q, 

the shrinkage factor c will prevent Var(Xt) from growing large with t. In fact, Var(Xt) 

now has a limit s2 as t approaches infinity, and this limit must satisfy the equation  

s2 = c2s2 + q. If c and s are known, this equation can be solved for q = s2(1-c2). 

It is not hard to quantify or estimate s for a real target, since s is the target’s root-

mean-square velocity. However, it is also necessary to quantify c. To do so, consider 
forecasting Xt+n from a knowledge of Xt. By applying the movement model n times, it 

can be shown that Xt+n = cnXt + (noise), where (noise) is a linear combination of Wt, 

Wt+1, …, Wt+n–1. The noise is 0 on the average. Now let c = exp(–∆/τ), where ∆ is the 

length of a time step, so that cn = exp(–n∆/τ). Since n∆ is the length of time over which 

the forecast is to be made, the parameter τ is a relaxation time for velocity. Thus the two 

target motion parameters that need to be quantified are τ and s. Given τ, s, and the time 

step length ∆, solve c = exp(–∆/τ) and q = s2(1 – c2) for the inputs to the movement 

model. For example, the East-West component of a ship’s velocity might have s = 5 kt. 

and τ = 1 hour. If ∆ = .1 hour (possibly because a measurement of the ship’s position is 

made every 6 minutes), then c = .905 and q = 4.532(kt)2. Figure 3 shows a Monte Carlo 

simulation of this movement model over an 8-hour period.  
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Figure 3.  An O-U process fluctuating about 0. 
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The revised model described above is a discrete version of the Ornstein-Uhlenbeck 

(O-U) process, the most general normal Markovian stationary stochastic process with 

zero expectations. The O-U process is often used as a model of velocity because most 

velocities are zero on the average. Integrating velocity gives position, so the position of a 

target whose velocity is O-U is sometimes called IOU.  

The U.S. Navy makes use of a Kalman Filter called the Maneuvering Target 

Statistical Tracker (MTST). MTST has a four component state vector, the first two being 

target location and the last two being target velocity. The two components of velocity are 

assumed to be independent O-U processes with the same (s, τ) parameters. The 

movement matrix is  

  

φ =

1 0 δ 0
0 1 0 δ
0 0 c 0
0 0 0 c

 

 

 
 
 
 

 

 

 
 
 
 

.  

Parameter c has already been explained.  Parameter δ is the multiplier for velocity used in 

updating position. Since velocity can fluctuate over the measurement interval ∆, and 

since the predictable part of velocity relaxes toward 0 with relaxation time τ, the velocity 

multiplier should be δ = 
    

exp −µ τ( )
0

∆

∫ du = τ 1 − c( ) . δ is always smaller than ∆, but there 

is very little difference between the two when ∆ is small compared to τ. The variance q 

appears in the Q matrix. The MTST measurement model depends on the type of 

measurement being made, but the movement model is always as described above. 

The O-U process has been described as a model of velocity, but it can be adapted to 

any phenomenon that fluctuates around 0, with the fluctuation typically meaning 

“deviation from the intended quantity”. For example, suppose that one component of the 

state vector is the target’s course in degrees, and that the target’s course fluctuates around 

0 with time constant τ = 96 seconds and standard deviation s = 4 degrees. Over an 8 

second time interval, c = exp(–8/96) = .92, and q = s2(1 – c2) = 2.456 in units of squared 

degrees. These are the parameters that would be used in the movement model for 8 

seconds of movement.  
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Vacuous Movement Step 
If the state does not change between measurements, then the movement step has no 

effect on either µ or Σ, and operation of the filter amounts to processing a sequence of 

measurements on the same unknown state. In these circumstances it is usually best to 

keep track of the inverse P = Σ–1 of the covariance matrix, rather than Σ. P is often called 

the precision matrix. In terms of P, the measurement step (see the Appendix) is 
 

MEASUREMENT 

P ← P + HtR–1H 
K ←P–1 Ht R–1 
µ ← µ + K(Ζ – µV – Hµ) 

Note the simplicity of the update for P; the formula makes it obvious that any 

measurement must literally add to the precision with which the state is known.  Note also 

that K is calculated after P is updated. 

Since P can only grow as more and more measurements are processed, the gain 

matrix K will eventually, in most cases, approach 0.  This phenomenon sometimes 

referred to as “covariance collapse.” There is nothing wrong with this if the state is 

indeed known to be unchanging, but if the state should change, a collapsed filter will not 

be able to track the change. Covariance collapse can be prevented by making Q nonzero, 

but in that case the movement step is no longer vacuous. 
In a sequence of measurements, let Pi be the reciprocal of Σi(+) (alternatively the 

reciprocal of Σi+1(–), since the two covariance matrices are identical) and µi = µi(+). The 

± modifiers are no longer needed when there is no movement. µi is simply the best 

estimate of the state after i measurements have been processed. Taking P0 to be 0 is 

common, since doing so has the effect of giving no weight to a priori judgments about 

the state.  
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Example 3 
Consider the linear regression of Y on X, where (xi, yi) = (2,7), (0,2), (5,14) for i = 1, 

2, 3. The usual approach is to find the best linear fit of the form Y = aX + b, where a and 

b are chosen to minimize the least squares expression 
  

yi − axi − b(i )=1
3 2

∑ . The solution 

is (a, b) = (2.395,2.079), obtained using the regression function on a hand calculator. This 

result can also be obtained using a Kalman filter where (a, b)t is regarded as the unknown 
(but unchanging, so there is no movement) state vector, with µ0 and P0 both taken to be 

0. The three measurements can be thought of as one super measurement  

Z = (y1, y2, y3)t, with H = 








 x1 1

 x2 1
 x3 1

  and R = rI, r being a scalar representing the variance 

associated with each observation and I a 3-by-3 identity matrix. Carrying out the 

measurement step, we find that 

 

      

P1 = 0 + 1
r

H tH = 1
r

xi
2

i=1

3
∑ xi

i=1

3
∑

xi
i=1

3
∑ 3

 

 

 
 
 
 
 

 

 

 
 
 
 
 

= 1
r

29 7
7 3

 

  
 

  ,

K1 =
r

38
3 −7

−7 29
 

  
 

  H
t 1

r
 
 
  

 
 =

1
38

−1 −7 8
15 29 −6

 

  
 

  ,   and

µ1 = 0 + K(Z – 0) = K
7
2

14

 

 

 
 
 

 

 

 
 
 

= 1
38

91
79

 

  
 

  =
2.395
2.079

 

  
 

  ,

 

the same result obtained by linear regression. 

The point here is not that Kalman filtering is an easier way to do linear regression 

(far from it), but that the Kalman filter behaves as it should in a familiar situation. Note 
that the unknown variance r doesn’t enter into calculating µ1 because it cancels in the 

computation of K1. µ0 was taken to be 0 for convenience in calculating µ1, but any other 

estimate would have produced exactly the same result. Try it. Another good exercise 

would be to show that the same result would be obtained even if the three measurements 

were not processed all at once. Try processing any two of them in a batch, and then 
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sequentially processing the third. Regardless of which two you select to process first, you 

should get the same final result. If you attempt to process only one measurement first, 

you will find that the first calculated precision matrix doesn’t have an inverse. This is 

Kalman’s way of protesting the task you have set him, namely the task of estimating two 

numbers from only one measurement when the prior estimate is valueless. 

In linear regression problems where the index i represents time, analysts sometimes 

worry about the parameters a and b changing slightly as time goes by. Intuitively, recent 

measurements should play a stronger role than old ones in estimating the state. This is 

exactly what would happen in a Kalman filter with a non-vacuous movement step where 

Q is positive, rather than 0. 

Extended kalman filters (EKF’S) 
If the measurement is a nonlinear function of the state variables, then the matrix H 

must be obtained by linearizing the nonlinear function. Formally, if Z = f(X) + V, then H 
= df(X)/dX|X=µ is the matrix of first partial derivatives (Jacobian). Except for the fact that 

H now depends on µ and that the shock is now Z – f(µ) – µV, the measurement step can 

be employed as before. The matrix H is used in calculating the Kalman gain, but it is not 

used in calculating the shock (the nonlinear function itself is used rather than the linear 

approximation).  Similarly, if the movement model X' = g(X) + W includes a nonlinear 
function g, then φ = dg(X)/dX|X=µ is the n-by-n Jacobian of g, and the movement step can 

be employed as before except that µ ← g(µ) + µW.  Note that the matrix φ is not used in 

updating µ; its use instead is in updating Σ.  In either case, the result is called an EKF. 

Example 4.  Triangulation 

The problem of estimating the position of a stationary target from several inaccurate 

bearing measurements can be solved by employing an EKF with a vacuous movement 

step. Let the state be (x, y)t, with polar coordinates relative to an observer (r,θ) as in 

Figure 4. Observer i is located at (xi, yi), i=1,2,3. 
Consider the measurement Z1 = θ1 + V1, where θ1 = arctan ((y-y1)/(x-x1)) is a 

nonlinear function of the state. Since dθ1/dy = cos(θ1)/r1 and dθ1/dx = –sin(θ1)/r1, H (for 

the first measurement alone) is [–sinθ1 cosθ1]/r1, a 1-by-2 matrix. Since θ1 and r1 depend 
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on the unknown state, H must in practice be evaluated by inserting the latest estimates of 
θ1 and r1. Assuming P0 = 0, the precision matrix after one observation is 

 
      
P1 = H1

t R1
−1H1 = R1

−1 sin 2 θ1 − sin θ1cos θ1
− sin θ1 cosθ1 cos2 θ1

 

 
 

 

 
  r1

−2,  

where R1 is the variance of the angular measurement in radians2. The product Rir
2
i   is the 

variance of the ith measurement expressed as a distance in the vicinity of the target. Let 
di ≡ Rir

2
i  . Then after n measurements, 

 

      

Pn =

sin 2 θi
dii=1

n
∑ −

sin θi cos θi
dii=1

n
∑

−
sin θi cos θi

dii=1

n
∑ cos 2θi

dii=1

n
∑

 

 

 
 
 
 
 

 

 

 
 
 
 
 

 .  

θ3
r 3

θ2

θ1

r 1 r 2

y

x

 
Figure 4.  Three stations measure the bearing to a target. 

We have not tracked through the state updates, but the shape and orientation of the 

bivariate normal distribution of the position of the target is already implied in P. The 

standard way of representing this distribution is to show the “two sigma ellipse,” an 

equiprobability contour that contains the state with probability 1–exp(–2) = .865. This 
ellipse has its major axis at inclination I, a major diameter of length 4s1 and a minor 

diameter of length 4s2, where the inclination I and the two standard deviations s1 and 
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s2 can be determined from P. For the sake of completeness, we record the formulas, 

letting P
      

−1 = Σ =
a h
h b

 

 
 

 

 
 : 
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2 = a + b

2
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Example 5 

Suppose X = (R, θ, U, Ψ)t, with the four components of state being range, bearing, 

speed and course; i.e., the state is position and velocity in polar coordinates. Active 

radars and sonars can often measure a Doppler shift in the transmitted frequency that is 

equivalent to observing a noisy version of Ucos(θ–ψ), the rate at which the range is 

changing. Suppose that noisy measurements of range and bearing are also available, so 

that each pulse results in a three-dimensional measurement: 

Z ← (R, θ, Ucos(θ–ψ))t + V. Since the cosine is a nonlinear function, an extended 

Kalman filter is required, with (letting S = sin(θ–Ψ) and C = cos(θ–Ψ)) 

 H = 






 1 0 0 0
 0 1 0 0
 0 -US C US

  . 

Virtually any other measurement could be processed in the same manner as range rate.  It 

is not required that each measurement be a direct measurement of a state variable, but 

only that each component should depend in some known manner on the state variables.  
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Since the quantities U, S, and C depend on the best current estimate of the state vector, 

the filter is an EKF.  H will be a different matrix with each employment of the 

measurement step. Similar comments hold for the matrix φ, although the precise 

specification of φ depends on the movement model. 

Since it is derived via Bayes Theorem, a (non-extended) Kalman filter makes 

optimal estimates in almost any reasonable sense of the word, provided it is applied in 

circumstances where the assumptions made in deriving it are valid. This is not true of the 

Extended Kalman Filter. Since the matrices H and/or φ depend on current state estimates 

and are used to obtain revised state estimates, there is a potential for bad estimates to get 

worse, and complete loss of track is possible. The design of practical filters in such 

circumstances is an art wherein one attempts to retain the behavior of the Extended 

Kalman Filter when things are going well, while simultaneously being able to recognize 

and correct for an incipient loss of track.  Dimensionless shock plays a role in the latter. 

Dimensionless Shock 
The shock Si used in making the measurement update at time i in an EKF is  

Zi – f(µi(–)) – µV, the difference between what is actually measured (Zi) and the best 

prediction of Zi based on all history previous to the ith measurement (f(µi(–)) + µV). One 

symptom of being out of control is that Si is larger than can reasonably be explained by 

randomness. A useful measure of tracking quality can be built on this observation, 
provided a scale can be found on which Si can be judged to be “unusually large.”  

The measurement model is that Zi = f(Xi) + Vi. Approximating f(Xi) by  

f(µi(–)) + Hi(Xi – µi(–)) leads to the approximation Si ≈ Hi(Xi – µi(–)) + (Vi – µV), a 

linear combination of the two independent random variables Xi and Vi. The approximate 

expected shock is 0, and the approximate variance of Si is HiΣi(–)Ht + R.  This variance 

is just the denominator of the Kalman gain computation, and it is the desired means for 
judging when Si is “too large.” Let the dimensionless shock be  

      
DSi ≡ Si

t HiΣ i −( )Hi
t + R( )−1

Si .  

If Si has m components, DSi should be a scalar random variable that has a Chi-square 

distribution with m degrees of freedom. Thus if DSi becomes large compared to m, the 
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likely explanation is that the filter has lost track. Note that the required matrix inverse is 
the same as is required to calculate Ki, so very little additional effort is required to also 

calculate DSi. 

In addition to its use in recognizing when an EKF has lost track, the dimensionless 

shock also has a use in associating data with targets. Suppose that several targets are 

being tracked simultaneously, and that any of them might have caused a particular 

measurement. Other things being equal, the best target to associate with the measurement 

will be the one for which the dimensionless shock is smallest. Alternatively, iff DS is 

large for all targets, then the measurement might have been caused by some previously 

undiscovered target. Associating data with targets is an important part of data fusion. See 

Bar-Shalom and Fortmann [7] for an in-depth treatment.  

Further Reading 
Kalman filtering was invented by and for the most part has been used by electrical 

engineers, even though there is nothing even faintly electrical about it. This explains the 

name, and also the fact that a great deal of the literature is in the IEEE Transactions 

series. Kailath [3] provides an excellent historically based review with 390 (!) references. 

He traces the underlying ideas back to the work of Kolmogorov, Krein, and Weiner in the 

1940s, and even beyond. Kalman’s essential contribution was to recognize that the 

required computations can be done recursively; the seminal paper is [4]. 

References [1, 2, 5] are textbooks. The movement and measurement steps can be 

justified as being optimal in a least squares sense even when the assumptions of 

normality made here are abandoned, and that approach is in fact the one more commonly 

pursued. There is also a continuous time KF that is obtainable as a limiting form of the 

discrete filter; it involves ordinary differential equations for µ and Σ instead of the 

replacement (←) operation of Figure 1.  

The most important application of KFs so far has been to tracking problems where 

the state is a more or less elaborate description of the position of something. There are 

several examples in Gelb [1] and Titus [6]. 
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Appendix 
Theorem: Let Z = HX + V, where X and V are independent, multivariate normal 

random variables for which E(V) = 0, Cov(V) = R, E(X) = µ, and Cov(X) = Σ. Then, 

conditional on Z being given, X is multivariate normal with mean µ̂  = E(X|Z) =  

µ + K(Z–Hµ) and covariance  = Cov(X|Z) = (I–KH)Σ, where K = ΣHt(HΣHt + R)–1. Σ

Proof: The joint density function of Z and X is (const.) exp (–q/2), where  

q = (x–µ)t –1(x–µ) + (z-Hx)tR–1 (z–Hx). By simple expansion by terms, one can show 

that q = (x–µ̂ )t
Σ

Σ –1(x–µ̂ ) + (const.), where (const.) does not depend on x,  
–1 = Σ–1 + HtR–1H, and µ̂  = µ + Σ Σ HtR–1 (z-Hµ). This verifies that E(X|Z) and 

Cov(X|Z) are µ̂  and , respectively, but in most cases formulas that do not require 

inversion of Σ will be more convenient. To obtain such, we use the fact that (I + UH)–1U 

= U(HU + I)–1 for any matrix U—note that the formula connects two matrix inversions 

of different dimension. In the following, we will define U = 

Σ

Σ HtR–1. We have  

 HtR–1 = (Σ–1 + HtR–1H)–1 HtR–1  Σ

                = (I + UH)–1 U = U(HU + I)–1  

                = ΣHt(HΣHt + R)–1  

                ≡ K, 

thus showing that the formula given for µ̂  in the statement of the theorem is correct. To 

show that the formula for Σ  is correct, we will use the fact that  
(I + UH)–1 = I – (I + UH)–1 UH. Since we showed above that (I + UH)–1 U = K, it 

follows by substitution that (I + UH)–1 = I – KH. We therefore have  

= (Σ–1 + HtR–1H)–1 = (I + UH)–1Σ = (Ι – ΚΗ)Σ, showing that the expression for Σ Σ  is 

also correct. 
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